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A new technique for numerically solving the reduced wave equation on exterior domains 
is presented. The method is basically a relaxation scheme. It is general enough to handle 
both inhomogeneous and nonlinear indices of refraction. Although the convergence is 
slow, the technique is tested on two classical problems: the scattering of a plane wave 
off a metal cylinder and off a metal sphere. The results are in good qualitative agreement 
with previously calculated values. In particular, the numerical solutions exhibit the correct 
diffractive effects at moderate frequencies. 

1. THE METHOD 

We are concerned here with a numerical method for determining U(x), the solution 
to 

AU + w2n(x)U = 0, (1) 

in an exterior region, i.e., a region containing the point at co. The index of refraction, 
n(x), is some smooth function equal to 1 at cc and is defined in N-dimensional 
Euclidean space or some subdomain. The parameter ~2 = (k@, where k is the 
wavenumber of the incident wave and a is a characteristic dimension of the scatterer. 
Since we are primarily concerned with the effect of the scatterer on an incident plane 
wave, we decompose the “total field” U(x) as follows: 

U = eiws + u(x). (2) 
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That is, the total field is the sum of an incident plane wave and a scattererd field U(X) 
that satisfies 

du + w”n(x)u + w”[n(x) - l] eiw= = 0. (3) 

The scattered function U(X) satisfies the Sommerfeld radiation condition at co, 

a 
ar 24 - iwu + (N- 1) UN() 

2r 
as r+co, 

or equivalently, 

24 - 4e g&$2 (1 + 0 (+)) as r--+co, 

where 0 represents the angular variables. Here the term (1 + 0(1/r)) is a power series 
in l/r. 

It is important to note that the corresponding time-dependent incident wave must 
have the time dependence exp(-iwt) for (4) and (4’) to be valid (i.e., the wave must be 
outgoing). This implies that the incident plane wave is coming from - cc in the x1 
direction and is moving “from left to right.” 

We next set 
u = v&wr (5) 

and find from (3) that v must satisfy 

where 

dv + 2iw(Vv * Vr) + io(dr)v + wz(n(x) - 1)v = f, 

f = &(I - n(x)) eiws--ior. 

Combining (4’) and (5), we deduce that u satisfies 

-v+ (N--)v4) a 
ar 2r 

as r--+00, 

or equivalently, 

+%2(1+0(~)) as r--+00. (8’) 

(6) 

(7) 

03) 

We rewrite (6) and (8’) in operator notation as 

Lv =f, g (vr (N-1)/2) = qr--2) as r-+00. (9) 

The method for solving this equation numerically is to find a hyperbolic time- 
dependent equation with the property that as the time t tends to infinity the solution 
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tends to the solution of (9). How to find this equation is discussed in [2] for general L. 
Here we show directly that the equation 

W(P))t = UP) -f 

has the desired property if we require 

N-l 
M-g+--- r (11) 

and 

U-1)/2) = qr-2) as r+co. 

We next set urcN-1)/2 = w  and note that (9) becomes 

0 = L(~y-(N-l)P) -f, 2 = O(r-2) as r 

The appropriate time-dependent problem for w  is 

2mT, = r(N-1)12[L(~r-(N-1)/2) - f] 
with 

W, - O(r-2) as r+co. 

Co. (12) 

(13) 

(14) 

We now consider (13) and (14) for the two practical situations N = 2 and N = 3. 

1.1. Case I: N = 2 

2 IVV, = WV, + 2iw@, + f bVo, + (fd(11 - 1) + &] W - r1/2f, (15) 

flP=o(&) as r-00. 

Finally, we set I8’ = eiwt W and obtain 

2w,, = w,, + f w,, + [m2(n - 1) + &] W - rl Pfe--id, 

w, - 0 as r-+00, 

u = &Jz + W(r, lj, t) &J(t+r)/rlP. 

These are the equations to be solved numerical1y.l 
We check the decay property here. The system for wt = W’ is 

2 Wit = Wi, + 2iw W; + $ W,l, + (02(n - 1) + -&-) W: 

W; = O(l/r2) as r-+co. 

1 Equation (17) is the wave equation with a transformation of variables. 

(17) 

(18) 

(19) 

(20) 
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We multiply this equation by r WL , integrate the real part over the spatial domain .9 
of the solution, use Wi = O(l/r2), W’ bounded, and obtain 

- s Re ViW; ds - 
a.9 ss 

D (w”(n - 1) r), 1 W’ I2 dr de 

1 
- - !I9 (I W; 1 2 - & Re Fi W’) dr de. 

2 

The last integral is rewritten as 

JS, [I W; - & w’ I2 + $ Re w:w’ - & I W’ I’/ dr de 

so that 

a 
at ss IrW,‘12drdB 

1 
- 2 S,, [r I Wi I2 - r-l I Wi I 2 + c& + w”(n - 1) r) I w’ 12) de -- 

- i, Re p;Wr’ dr - j19 /(u2(n - 1) r), 1 W’ I2 

+ k 1 W,! - $ W’ I21 dr de. (21) 

For the moment we assume conditions so that the integrals are negative. 
If we had had 2r-l W: on the left-hand side of (20), we would now have 

fS+ where I = 
lJ 

1 w;12drdB, 

and hence would obtain exponential decay. This, however, would raise numerical 
difficulties. The leading operator would be 

2 
a2 - - 

ar at 

instead of 
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Dropping the o-differentiation for convenience, one sees that in the first case the 
characteristic speeds are the roots y//3 of 2/3y - rp2 = 0 and 2& - /Y = 0, respec- 
tively, i.e., co and r/2 or co and +. In any difference scheme we may introduce later 
we must for stability at least pick up data at a previous time over a sufficiently large 
interval. (However, in this case we cannot, as in [I], add a term W, to obtain stability.) 
These data are all on a characteristic surface (t = constant) and hence the rate dr/dt 
is at least determined by the seconA characteristic speed. Thus the marginal rates are 
h/At > r/2 and h/At > l/2, respectively. The first is bad for large distances. The 
second is uniform and was the one used. The best scheme would probably involve 
g(r) Wqt as the left-hand operator, with g adjusted to the particular problem. 

But returning to the question of decay we have JJr / Wi I2 dr d0 decreases mono- 
tonely, and since it is positive its time derivative goes to zero; hence the integrals 
on the right go to zero, and thus by their fixed sign W’, W; , Wi all go to zero in L2. 
We may assume smoothness, and thus we have W, and its derivatives go to zero. 
From (15) we see that r1i2?f’ tends to the steady solution of (9). 

It remains only to determine what makes the integrals of (21) negative definite. 

(A) We assume that the origin lies inside 39 and that W’ satisfies the Dirichlet 
condition, that is, W is prescribed on ag. Then using Wi de + W; dr = 0 on a3 as 
well as W’ = 0, we have in (21) the boundary integral + J& (r 1 W: I2 + 1 Wi 1”) de. 
Thus if de < 0 on ZS, i.e., if a9 is star-shaped, the boundary integral is negative as 
required. 

(B) If the boundary reduces to r = 0 (no object) since W’ N r112, Wi w r312, 
dtl < 0, the boundary integral is again negative as required. 

(C) The condition on the index of refraction to make the volume integral have 
the right sign is 

((n - l)r)r > 0. 

It should be remarked that many numerical examples work even if this condition is 
violated. It is not, however, a sharp condition. There will be decay (see [2]) if there are 
no trapped rays. If Iz = n(r) the trapped rays are circles and cannot occur if (nr2)T > 0 
or ((n - l)r), > (-1 - n). If this condition is violated the solution to the original 
problem may be close to an outgoing solution corresponding to a complex eigenvalue 
of small imaginary part. 

1.2. Case II: N = 3 

Introducing polar coordinates, we write (13), (14) as 

2mY, = mr, + 2iwFVr + (1/r2) S?(PV) + w2(n - I)@ - rf, 

k&. = 0(1/r? as r-+co. 

(22) 

(23) 

The reader can check the decay to a steady state in a somewhat simpler way and with 
the same conditions on ag and n. Here g is the Laplace-Beltrami operator. 
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Finally, we set m = exp(iwt) W and obtain 

2 w,, = w,, + (l/rZ) 5+?(W) + o2(n - 1) w  - rfe+t, (24) 

w, + 0 as r+oo, (25) 

U = eiws + W(r, 6, t) eiwCt+‘)/r, (26) 

and f is given by (7). 

2. THE TWO-DIMENSIONAL PROBLEM 

To complete the formulation of the time-dependent problem before introducing 
the difference equation for (17) we must prescribe more data. First, since (17) has 
t = constant as a characteristic surface, we must give W(r, 8, t) exactly one initial 
datum, i.e., its value 

V, 4 0) = Q<r, Q, (28) 

where Q is arbitrary. Our experimental observation is that the initial datum is “swept 
away” after a characteristic time. Second, we must give W(r, 8, t) a compatible value 
on the boundary of the scatterer or a regularity condition at r = 0. We distinguish 
two cases that were computed: 

Rejlecting cylinder. The scatterer is a conducting cylinder r = 1; i.e., the total 
field U = 0 vanishes on the boundary. We take the circular cylinder with the origin 
at its center for simplicity in the numerical scheme. From (19) we find that 

w(1, 8, t) = -exp[io(cos 8 - t - l)]. (29) 

Inhomogeneous cylinder. In this case the scatterer is an object occupying the 
region r < 1. This object is characterized by its nonconstant index of refraction n(r). 
Since the total field U(X) is well behaved at r = 0, it follows from (19) that 

~(0, 8, t) = 0. (30) 

The dijkence scheme. The grid pattern which we use is a rectangular grid in r, 
t9 space. We obtain the difference equation for (17), with W& the value of the solution 
at r = ri = j dr + con&, 0 = m flB at time t = n At. We replace the Laplacian by 
the obvious differences, 
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For the mixed derivative term we take 

(32) 

Finally we have that 

[w2(n - 1) + l/4r2] W - rl/zfe-i”t 

- {Wz(nj,m - 1) + 1/4rj2) W& - rjl’~,me-iwtfi. (33) 

In (31) and (32), 

h = Ar, p = Ar/AO, h = At/Ar. (34) 

This difference scheme conserves some of the quantities that go into (17). It was too 
awkward to introduce a nine-point scheme that would have conserved exactly. 

Combining (31)-(33) we arrive at 

(35) 

where 

F& = r;71 _ nj,m) eiwhCO%-V~h~), 

a=l+X; c=h-1, 

bj = 2h[l + p2/rj2] - Xh2/4rj2 - Xw2h2(njsm - 1), 

(36) 

(37) 

(38) 

dj = Xpa/rj2 = ej . (39) 

The domain is taken to be 8 E [0,271], r E [O, R] or r E [l, R] depending on which case 
we are dealing with. Note that the index of refraction ni,m apperas only in the old time 
step. Hence, although we may be violating the decay condition C, we can always take 
the index to be any nonlinear function of the solution or even its spatial derivatives and 
update it. Our experiments were confined to taking n - 1 to be quadratic in the 
absolute value of the total field. This is the typical nonlinearity proposed for laser 
beams. 

2.1. The Refecting Cylinder 

In this section we solve Eq. (35) for the case of a reflecting cylinder. The step size h 
is (R - 1)/N, where N is an even integer. Since r E [ 1, R], we set 

rl = 1, r, = 1 + (j - I)h for l<j<N+l (40) 

and 
r - R. N+l - (41) 
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With 19 E [0,27r], the step size A0 is 27~/M, where M is any integer. We set 

e1 = 0, 8, = (m - 1) A0 for 1 < m < (M + 1) 

and 
e - 2n. I++1 - 

Now at r = R we impose the radiation condition (18) in the form 

W” - w;,, N+l.m - 

for all m and A > 0. The boundary condition (29) becomes 

W” 1,m = - exp[iw(cos 0, - nhh - I)]. 

Since W is periodic in 8, we have 

W3&n = w;, 

for IZ > 0, 1 < j < N + 1, 1 < m < M. The initial conditions become 

J%n = Qism , l<j<N+l, l<m<M+l, 

and must satisfy (45) and (46). We now explain how (35) is solved explicitly. 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

Consider the case when j = 2, n = 0, and m = 2. From (35) we see that, except 
for the first term, the right-hand side is evaluated at t = 0 and hence is known. The 
first term, W& , is given by (45), since it is the value of W on the boundary. Thus 
W.& can be determined. By increasing m with j = 2 fixed, we obtain 

W1 3.m for m = 2, 3 ,..., M + 1. 

We next use (46) and obtain Wi,l . Proceeding outward in j we compute 

Wj’,,m for j = 1, 3, 5, 7 ,..., (N + 1); 1 < m < M + 1. 

This is where the evenness of N is used. We now know W at the odd-numbered 
“r mesh points.” To fill in the others we use (44) to find 

w1 - JKL.nz * N,m - 

Next we solve (35) for Wj!!l,m obtaining Wj& = W;+l,nz + F(W&) and set 
j = N - 1 to obtain 

wL3,wL = wltT,wa + F(*) for 1 <m<M+l. 
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Continuing this process we “march back” toward the boundary r = 1 and pick up the 
even-numbered mesh points, i.e., 

W&l for j = N - 2, N - 4 ,..., 2; 1 < m < A4 f  1. 

We now know W at the first time step. 
The entire sweeping process is repeated until convergence has been obtained. To 

determine the convergence numerically, recall that for large t the scattered field u is 
given approximately by 

u(rj , 19~) N [ W~jeiwt,](eiwrj/rjl’2), 

The bracketed term approximates the solution W of Eq. (15). Since W approaches a 
“steady state” for large time, the term WTjeiwt fl must become independent of n for 
large n. Thus the magnitude 1 W$I becomes independent of II. We terminate our 
computation when 

N+l A4+1 

z1 Fl II wa - I w:j I>" < E 

for some prescribed E > 0. 

2.2. The Inhomogeneous Medium 

The scheme here is the same as that in the previous case except for two points: 

(1) r E [0, R], h = R/N, and rl = 0, 

and from (30), 

(2) W&=Oforl <m<M+l;n>O. 

It should be noted here that both the differential and difference equations are 
singular at r = rl = 0. To avoid evaluating Eq. (35) at rl = 0 we “introduced a metal 
cylinder of radius 2h” about the origin by setting 

W” - w;, = wg, = 0; 1.m - l<m<M+l; n>O, (48) 

and introduced an error of order (4h)1/2. 

2.3. Numerical Experiments 

(A) The scattering of plane waves off a reflecting cylinder is a well-studied 
physical problem. The classical attack is to separate variables and sum the resulting 
Fourier series. The coefficients in this series involve both Bessel and Hankel functions 
-the sum is not known analytically. Various asymptotic methods are available 
for the cases where ka < 1 and ku > 1. These are the quasi-static method and 
geometrical optics method, respectively, [43. However, when ka = O(1) one must 
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sum numerically a sufficiently large number of terms to obtain a reasonable answer. 
When ka starts to become large this number increases dramatically. (It was a problem 
similar to this which led Watson to invent his now famous transform.) Moreover, 
for each value of 0 the sum must be recomputed. This is where computation time is 
consumed. 

We have applied our method to this problem for two cases; w  = 1 and w  = 5. Our 
results are shown graphically in Figs. 1 and 2. In both cases we have achieved good 
qualitative agreement with the graphical results presented in [4]. To make the com- 
parison more quantitative we have converted the graphical information given in [4] 
into tabular form. We have shown these values in Table I for the case w  = 5. Our 
results are shown there also; the agreement is very good. The discrepancies are caused 
by two effects: the extrapolation of graphical data and the finite size of our numerical 
grid. 

For both the cases of w  = 1 and w  = 5 we have 1 < r < 9 with h = 0.1 and 
N = 80. In order to conserve computer space we made the following change in our 
method. Making use of the symmetry of the solution about the x axis (i.e., W(r, 0) = 

FIG. 1. The polar graph of the cross section, (71w/2)lla 5’(e), for a metal cylinder with u - S(0) 
(e‘~‘/W), w = ku = 1, Ar = 0.1, A0 = n/40, and At = l/250. 
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-3.001 

FIG. 2. Same as Fig. 1 with o = 5. 

TABLE I 

The cross section (TTW/Z)‘~*S(~), for a metal cylinder with u -S(@(ei~/rlla), w = ka = 5, Ar = 0.1, 
A0 = n/40, and At = l/250 

Kriegsmann 
and 

Morawetz Bowman et al. 

0 5.61 6.0 
9 5.30 5.25 

18 3.18 3.68 
27 2.10 1.98 
36 1.81 1.83 
45 2.0 1.95 
54 1.89 1.83 
63 1 .I4 1.66 
12 1.79 1.75 
81 1.86 1.83 
90 1.86 1.83 

108 1.93 1.88 
126 1.97 1.92 
144 1.99 1.99 
162 1.99 1.99 
180 2.00 2.00 
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IV@, -6), it was necessary to solve for Win the contracted region, 8 E [0, x]; r E [ 1,9]. 
The new boundary conditions are then 

(49) 

In terms of the difference approximation this gives 

w9L1 = w&n and W& = w;, (49’) 

forn 30, I <j<(N+ 1). 
In both these cases the time was allowed to become large enough to ensure that any 

initial data or noise was “swept” away (see Appendix). Although our initial guess 
was W = 0 for both cases, the numerical solutions had essentially converged when n 
became larger than nmax , where 

In this formula the factor 2 arises from the slope of the characteristic line, see (22). 
The factor 8 is the width of the numerical grid in the r direction. 

(B) The scattering of plane waves by inhomogeneous media is a problem which 
has also received considerable attention. The cylinder models in some cases a plasma 
target (rf-heated Tokamak involving a two-dimensional pellet). The problem has been 
studied analytically by geometrical optics and numerically for n = n(r). The same 
separation method is used, but now the radial eigenfunctions must be computed. If 
n = n(r, 0) or is nonlinear the separation-of-variables method is useless, since all 
modes are coupled together. 

In our computer runs we have chosen for comparison 

n(x) = p(r); e<r<*, 

= 1; &r<2, 

and as a nonlinear example 

n(x) = 1 + (p(r) - 1) A I U 12, 

where U is total field; see (1). We have run the problem with 8 E [0,27r] because in 
general W(r, ti) # W(r, -~9) unless n(x) has this symmetry. Thus for storage reasons 
we were limited to R = 2. 

In any case, we choose both a quadratic and a linearp(r): 

and 

p = 4r2 for 0 < r < &, 

= 1 for 4 < r < 2, 

P = 20 - dr + y. for 0 < r < =& 

=l for 3 < r < 2. 
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In both cases the numerical solutions converged after the characteristic time. We even 
adjusted y, so n(O) < 0 and the solution still converged. 

We have not compared our runs with any previously tabulated results, but the 
numerical solutions converged and were completely independent of the initial guess. 

3. THE THREE-DIMENSIONAL SYMMETRIC PROBLEM 

Before introducing the difference equation for (24) we add the initial and boundary 
data necessary for a well-posed problem. First, the initial values are 

W(r, 0, 4, 0) = Q@, 0 (50) 

In order to have only two space variables we assume (a/a$)lV = 0. The method, 
however, could be applied equally well to the full three-dimensional problem, in 
principle. This will hold if the incident wave is a plane wave directed along ti = 0. 

With this incident plane wave we find that (24) reduced to 

2wrt= wT+&g/( sin 8 ge W) + w2(n - 1) W - r$riwt (51) 

withfgiven by (7), the behavior at co by (25), and the total field by (26). 
Now since U is regular at the origin we have 

~(0, 8, t) = 0. (52) 

Furthermore, from (5 1) we note the singular term cot 8 W, . But U is regular at t9 = 0, 
7r so that 

$w=o for e = 0, r. (53) 

Finally, if we consider the scattering of a reflecting sphere at I = 1, we have U = 0 
there or 

w(1, 9, t) = -exp[iw(cos e - t - l)]. (54) 

We now give the difference equation for (51) with W:, defined as in the previous 
cases. 

For the terms W,, + (l/r3 Woo we use the difference expression given in (31). For 
the term 2W,., we use (32). Note there is no term 1/4r2, but instead the term cot OW, 
for which we set 

w, cot e - * w;rn+1 - VL-ll, (55) 

and following the previous pattern, 

W”(tl - 1) W - rfepiwt -+ w2(nism - 1) W?y, - rifj,,epiwnAh, (56) 
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where again, X = At/At-, h = Ar. Combining all of these expressions yields 

with 
F& = rj(l _ nj,,) eiwbO%n-r+hn], 

a=l+X; c=x-1, 

bj = 2X(1 + p2/rt) - Xo2h2(nj,m - l), 

dj,,, = {hp2 + ghph cot tl,}/r;, 

ejvrn = 2Xp2/rj2 - dj,,, , 
and 

p = Ar/A& 

3.1. The Reflecting Sphere 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

In this section we solve Eq. (57) for the unit reflecting sphere problem. For this 
problem r E [I, R] and the step size h = Ar is (R - 1)/N. Once again, N is an even 
integer. We set 

r1 = 1; rj = 1 + (j - I)h for 1 <j<(N+l) (64) 
and 

r - R. N+l - (64’) 

Since the incident wave is symmetric about 6’ = 0 and 7, we only consider the range 
0 E [0, ~1 (i.e., W(r, 8, t) = W(r, -0, t)). Then de = r/M and 

8, = 0, 8, = (m - 1) A& l<m<M+l, 

e 
(65) 

M+l = 7T. 

Again at r = R = r,,, we have W, = 0 and 

W” - K&n 3 N.m - n>O, l,<m<M+l. (66) 

The boundary condition (54) becomes 

W” 1.n = - exp[iw(cos 8, - &A - I)]. (67) 

The initial condition is 

Wi9m = Qm for some Q(r, 0). (68) 

For symmetry it is necessary that Q(r, 0) = Q(r, 4). 
The sweeping method is again used to solve (57). But as we can see, a vertical sweep 

will give W& onlyfor2<m<ikf.Wecannotletm=M+1,sincecot0,=co 
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there and di,,+l becomes singular. This is where we apply the regularity condition (53). 
We set 

w;A4+1 = w&4 > l<j<N+l, (69) 
and 

w;, = w:, 9 1 <j<N+l. (70) 

(This also saves storage.) 
The sweeping method coupled with (66), (69), and (70) yields the numerical solution. 

3.2. The Inhomogeneous Medium 

The scheme is the same as that in the previous case except for three points: 

(1) r E [0, R], h = R/N, and rl = 0. 

(2) w&n =O,n>O,l<m<M+l. 

We considered only cases where 

(3) n(r, 0) = n(r, 4, 

3.00 

2.00 

-2.00 

-3.00 

FIG. 3. The polar graph of the cross section, F(B), for a metal sphere with u -F(B)(e*/r), 
w = ka = 1, Ar = 0.1, A9 = a/40, and At = l/250. 
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so that W has the same symmetry. The solution of (57) follows on the interval [0, ~1 
by the method outlined in the case of the reflecting cylinder. 

Once again, it is necessary to avoid the singularity at the origin by setting 

wn - w;, = w;, = 0; 1.m - n>o; l<m<(Mfl). (71) 

3.3. Numerical Experiments 

We have run the program successfully only for a metal sphere. Again the classical 
method is to separate variables, but now one ends up with a Fourier series involving 
spherical Hankel and Bessel functions. 

We have applied our method to this problem for the cases: w  = 1 and w  = 5. 
In both cases we have achieved good agreement with the tabulated results given by 
Bowman et al. [4]. These results are shown in Figs. 3 and 4. In both cases we had 
h = 0.1 and N = 80 with Ati = ~14.0 and At = h/25. 

FIG. 4. Same as Fig. 3 with w = 5. 

APPENDIX: SWEEPING OUT OF INITIAL DATA 

We consider the solution of the simplest second-order equation 

2w,, = ww (0.1) 
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in the strip (0, 1) x (0, a~) and subject to the initial and boundary data 

W(0, t) = W,(l, t) = 0, (0.2) 

W, 0) = Q(r). (0.3) 
From (0. 1) we find 

W, = F(r + it). (0.4) 

That is, W, is a constant along the characteristics r + it = constant. Therefore, 
along each characteristic that cuts the line r = 1 we have W,. = 0. Thus in the region 
t > 2(1 - r), W,. = 0 or W = h(t). But W = 0 for r = 0. Thus 

w=o for t > 2. (0.5) 
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